meta-analysis shows that mitochondrial mutations are not neutral

ralph doblera,†, damian k dowlingb, edward h morrowc, klaus reinhardta

aapplied zoology, department of biology, tu dresden, 01062 dresden, germany; bschool of biological sciences, monash university, victoria, 3800, australia; cschool of life sciences, university of sussex, john maynard smith building, brighton, bn1 9qg, uk; †ralphdobler@gmx.ch

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{human_mito.png}
\caption{Sketch of the human mitochondrial genome and its gene products.}
\end{figure}

1. mitochrondial genome mutations: always neutral?

mt genome mutations affect life-history traits, metabolism and fitness. these effects can either be additive or be based on epistatic interactions between the mt genome and the nuclear genome. epistatic effects between co-evolved and non co-evolved genome combinations in animals appear to be moderate to strong4 (figure 2).

this indicates that the mt genome and the nuclear genome have co-evolved, likely selected for by maximising atp production. this resulted in an optimised interplay between the polypeptides form both genomes.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{effect_size_2.png}
\caption{Effect-size estimates for combined additive and epistatic effects on mt genome mutations.}
\end{figure}

2. the effect (strength) of mitochondrial genome mutations depends on metabolic needs

hypothesised by lane, species with higher metabolic needs experience stronger effects by mt genome mutations5. the higher the metabolic needs of an individual are, the more it hinges on a perfect interplay between the mitochondrial and nuclear encoded elements of the etc. this hypothesis got some first empirical support for twelve animal species in a meta analysis4 (figure 3).

metabolic needs are tissue-specific. more detailed knowledge about tissues and cell types prone to be affected by mt genome mutations could enhance our knowledge about and understanding of diseases caused by such mutations.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{effect_size_3.png}
\caption{An increase in the basal metabolic rate (bmr) leads to stronger effects of mitochondrial genome mutations.}
\end{figure}

want to know more?